1. Li, T.#; Zheng, X.#; Liu, X.; Zhang, H.; Grieneisen, M. L.; He, C.; Ji, M.; Zhan, Y.*; Yang, F. Enhancing space-based tracking of fossil fuel CO2 emissions via synergistic integration of OCO-2, OCO-3, and TROPOMI measurements. Environmental Science & Technology, 2024. 2. Meng, X.; Pang, K.; Zhan, Y.*; Wang, M.*; Li, W.; Wang, Y.; Zhang, J.; Xu, Y. Light-duty gasoline vehicle emission deterioration insights from large-scale inspection/maintenance data: The synergistic impact of usage characteristics. Environment International, 2024. 3. Liu, X.; Pu, X.; Lu, C.; Zhang, H.; Li, T.; Grieneisen, M. L.; Li, J.; Ma, N.; Yan, C.; Zhan, Y.*; Yang, F., Interpretable regional meteorological feature extraction enhances deep learning for extended 120-h PM2.5 forecasting. Journal of Cleaner Production, 2024. 4. Zheng, X.#; Meng, H.#; Tan, Q.; Zhou, Z.; Zhou, X.; Liu, X.; Grieneisen, M. L.; Wang, N.; Zhan, Y.*; Yang, F. Impacts of the Chengdu 2021 world university games on NO2 pollution: Implications for urban vehicle electrification promotion. Science of the Total Environment, 2024. 5. Li, W.#; Li, Y.#; Xu, W.; Chen, Z.; Gao, Y.; Liu, Z.; Li, Q.; Jiang, M.; Liu, H.; Luo, B.*; Zhan, Y.*; Dai, L.* Maternal PM2.5 exposure and hypospadias risk in Chinese offspring: Insights from a nationwide surveillance-based study. Journal of Hazardous Materials, 2024. 6. Tang, D.; Zhan, Y.*; Yang, F. A review of machine learning for modeling air quality: Overlooked but important issues. Atmospheric Research, 2024. 7. Mi, T.; Tang, D.; Fu, J.; Zeng, W.; Grieneisen, M. L.; Zhou, Z.; Jia, F.; Yang, F.; Zhan, Y.* Data augmentation for bias correction in mapping PM2.5 based on satellite retrievals and ground observations. Geoscience Frontiers, 2024. 8. Zhao, Z.; Lu, Y.; Zhan, Y.*; Cheng, Y.; Yang, F.; Brook, J. R.; He, K. Long-term spatiotemporal variations in surface NO2 for Beijing reconstructed from surface data and satellite retrievals. Science of the Total Environment, 2023. 9. Fu, J.; Tang, D.; Grieneisen, M. L.; Yang, F.; Yang, J.; Wu, G.; Wang, C.; Zhan, Y.* A machine learning-based approach for fusing measurements from standard sites, low-cost sensors, and satellite retrievals: Application to NO2 pollution hotspot identification. Atmospheric Environment, 2023. 10. 陈玉敏; 魏阳; 常政威; 张凌浩; 刘洪利; 刘雪原; 曾文; 赵子翔; 李春圆; 米潭; 詹宇.* 基于遥感数据和XGBoost算法的31个城市NO2、CO2浓度比率变化特征. 地球科学与环境学报, 2023. 11. He, C.#; Ji, M.#; Li, T.; Liu, X.; Tang, D.; Zhang, S.; Luo, Y.; Grieneisen, M.L.; Zhou, Z.; Zhan, Y.* Deriving full-coverage and fine-scale XCO2 across China based on OCO-2 satellite retrievals and CarbonTracker output. Geophysical Research Letters, 2022. 12. Wu, Y.; Di, B.; Luo, Y.; Grieneisen, M.L.; Zeng, W.; Zhang, S.; Deng, X.; Tang, Y.; Shi, G.; Yang, F.; Zhan, Y.* A robust approach to deriving long-term daily surface NO2 levels across China: Correction to substantial estimation bias in back-extrapolation. Environment International, 2021. 13. Zeng, W.#; Zhao, H.#; Liu, R.; Yan, W.; Qiu, Y.; Yang, F.; Shu, C.*; Zhan, Y.* Association between NO2 cumulative exposure and influenza prevalence in mountainous regions: A case study from southwest China. Environmental Research, 2020. 14. Liu, D.; Di, B.; Luo, Y.; Deng, X.; Zhang, H.; Yang, F.; Grieneisen, M.L.; Zhan, Y.* Estimating ground-level CO concentrations across China based on national monitoring network and MOPITT: Potentially overlooked CO hotspots in the Tibetan Plateau. Atmospheric Chemistry and Physics, 2019. 15. 汤宇磊; 杨复沫; 詹宇*. 四川盆地PM2.5与PM10高分辨率时空分布与关联分析. 中国环境科学, 2019. 16. Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M. L.; Di, B.* Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and spatiotemporal kriging model. Environmental Science & Technology, 2018. 17. Zhan, Y.; Luo, Y.; Deng, X.; Grieneisen, M. L.; Zhang, M.; Di, B.* Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environmental Pollution, 2018. 18. Zhang, R.; Di, B.; Luo, Y.; Deng, X.; Grieneisen, M. L.; Wang, Z.; Yao, G.; Zhan, Y.* A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels. Environmental Pollution, 2018. 19. Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M. L.; Shen, X.; Zhu, L.*; Zhang, M.* Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmospheric Environment, 2017. 20.Zhan, Y.; Sun, J.; Luo, Y.; Pan, L.; Deng, X.; Wei, Z.; Zhu, L.* Estimating emissions and environmental fate of di-(2-ethylhexyl) phthalate in Yangtze River Delta, China: Application of inverse modeling. Environmental Science & Technology, 2016.
|